首页|基于Swin Transformer和UNet的肺结节分割方法

基于Swin Transformer和UNet的肺结节分割方法

扫码查看
肺结节的准确分割是后续良恶性分析和诊断的关键.由于基于卷积神经网络的分割模型受限于局部特征提取特性,忽略了全局特征.因此,本文提出了一种新的肺结节语义分割框架ST-UNet网络,将Swin transformer嵌入UNet中,构成一种新颖的Swin Transformer和CNN并行的双编码器结构.结果表明:该模型不仅对肺结节的分割具有较好的性能,而且对医生进行肺结节的早期诊断具有重要的临床意义和应用价值.
Nodule Segmentation Method Based on Swin Transformer and UNet
Accurate segmentation of pulmonary nodules is the key to subsequent benign and malignant analysis and diagnosis.Because the segmentation model based on convolutional neural network is limited by local feature extrac-tion,the global feature is ignored.Therefore,this paper proposes a new semantic segmentation framework for pulmo-nary nodules ST-UNet network,and emparts Swin transformer into UNet to form a novel dual encoder structure of Swin Transformer and CNN in parallel.The results show that this model not only has a good performance in the seg-mentation of pulmonary nodules,but also has important clinical significance and application value for doctors in the early diagnosis of pulmonary nodules.

lung nodule segmentationSwin TransformerUNet

裔馥华、张在房

展开 >

上海大学机电工程与自动化学院

肺结节分割 Swin Transformer UNet

2024

计量与测试技术
成都市计量监督检定测试所

计量与测试技术

影响因子:0.175
ISSN:1004-6941
年,卷(期):2024.51(1)
  • 11