首页|一种基于点云语义图描述符的回环检测方法研究

一种基于点云语义图描述符的回环检测方法研究

扫码查看
随着计算机水平和机器人传感器技术的不断进步,移动机器人已逐渐向智能化发展.其中,定位与建图(SLAM)是其定位的关键技术,回环检测是SLAM系统的重要模块.为解决传统回环检测耗时长和效率低等问题,本文提出一种基于点云语义图描述符的回环检测方法,在KITTI里程计数据集00和05序列中进行回环检测性能测试,并与Scan Context、LEGO-LOAM和VFH三种算法进行对比.结果表明:该方法在100%准确率下的召回率和50%召回率下的准确率最高,回环检测性能最好.
A Loop Closure Detection Method Based on Point Cloud Semantic Graph Descriptor
With the continuous progress of computer level and robot sensor technology,mobile robots have gradually developed to intelligence.Among them,localization and mapping(SLAM)is the key technology of localization,and loop detection is an important module of SLAM system.In order to solve the problem of long time and low efficiency of traditional loopback detection,a loopback detection method based on point cloud semantic graph descriptor is pro-posed in this paper.The loopback detection performance is tested in the sequence of KITTI odometer data set 00 and 05,and compared with Scan Context,LEGO-LOAM and VFH algorithms.The results show that the method has the highest recall rate under 100%accuracy and 50%recall rate,and the best loopback detection performance.

point cloud descriptorsemantic segmentationloop closure detectionlaser SLAM

田应仲、刘峰、杨晓东、倪雨嘉、李龙

展开 >

上海大学机电工程与自动化学院

上海市儿童医院

点云描述符 语义分割 回环检测 激光SLAM

2024

计量与测试技术
成都市计量监督检定测试所

计量与测试技术

影响因子:0.175
ISSN:1004-6941
年,卷(期):2024.51(1)
  • 6