首页|基于图像处理和SVM的定位基准分类研究

基于图像处理和SVM的定位基准分类研究

扫码查看
为解决机器人自动化制孔过程中多特征定位基准分类的问题,本文提出一种基于图像处理和SVM的定位基准分类方法,对包含多特征定位基准的图像进行基于全局最优阈值的基准ROI区域分割,计算基准特征的轮廓统计方差、轮廓圆度和特征区域灰度均值,并作为描述定位基准的特征参数,结合SVM实现定位基准的识别分类.结果表明:该方法对定位基准的识别准确率为94.3%,召回率为95.9%,对机器人自动钻孔全流程自动化有一定的应用价值.
Research on Positioning Datum Recognition Based on Image Processing and SVM
In order to solve the problem of classification of multi-feature positioning datum in the process of robot automatic hole making,this paper proposes a positioning datum classification method based on image processing and SVM.The image containing multi-feature positioning datum is segmsegmed by reference ROI region based on glob-al optimal threshold,and the statistical variance,roundness and gray mean of feature region of the reference feature are calculated.It is used as the characteristic parameter to describe the positioning datum and combined with SVM to realize the identification and classification of the positioning datum.The results show that the accuracy of the method is 94.3%,the recall rate is 95.9%,and it has certain application value for the whole process automation of robot automatic drilling.

digital image processingsupport vector machinesclassifiersfeature vectors surface

吴凡、吴佳滢、薛雷、黄亮

展开 >

上海飞机制造有限公司

华中科技大学无锡研究院

图像处理 支持向量机 分类器 特征向量

&&

COMAC-SFGS-2021-669

2024

计量与测试技术
成都市计量监督检定测试所

计量与测试技术

影响因子:0.175
ISSN:1004-6941
年,卷(期):2024.51(2)
  • 1
  • 5