首页|基于优化SVM模型的立铣刀在机崩刃监测技术研究

基于优化SVM模型的立铣刀在机崩刃监测技术研究

扫码查看
随着加工精度要求不断提高,切削过程中,对刀具在机磨损或崩刃状态进行在机实时监测的需求日益增加.本文以声发射和主轴功率为监测信号,通过提取时域、频域和时频域的有效特征,构建了基于融合信号的平底立铣刀在机崩刃SVM监测模型;采用网格搜索、粒子群和遗传算法优化SVM模型参数,并在实际切削环境中,将平底立铣刀的崩刃监测效果进行对比.结果表明:基于遗传算法优化的SVM模型对铣刀崩刃状态监测效果最佳.
Research on Monitoring Technology of End Milling Cutter Breaking in Machine Based on Optimized SVM Model
With the continuous improvement of machining accuracy requirements,there is an increasing demand for real-time monitoring of tool wear or blade breakage during cutting.In this paper,acoustic emission and spindle power are used as monitoring signals.By extracting effective features in time domain,frequency domain and time-frequency domain,a SVM monitoring model based on fusion signal is constructed.Mesh search,particle swarm opti-mization and genetic algorithm were used to optimize SVM model parameters,and the monitoring effect of flat end milling cutter was compared in actual cutting environment.The results show that the SVM model based on genetic algorithm optimization has the best effect on the state monitoring of milling cutter breakage.

acoustic emissionspindle power signalsblade breakage monitoringgenetic algorithmSVM model

张曦、周青峰、张龙佳、郑文妞

展开 >

上海大学机电工程与自动化学院

声发射 主轴功率 崩刃检测 遗传算法 SVM模型

2024

计量与测试技术
成都市计量监督检定测试所

计量与测试技术

影响因子:0.175
ISSN:1004-6941
年,卷(期):2024.51(2)
  • 9