首页|基于神经网络的机械臂高阶滑模控制

基于神经网络的机械臂高阶滑模控制

扫码查看
针对多关节机械臂控制系统的设计中机械臂模型参数未知和外在干扰的抖振问题,提出一种基于神经网络的机械臂高阶滑模控制,并在快速终端滑模面的基础上,利用饱和函数解决了奇异问题,采用径向基神经网络(RBFNN)近似估计系统参数,增加了误差估计器补偿估计误差和外部干扰.同时,设计了一种具有适当更新律的自适应有限时间控制律.实验表明:该控制方法在机械臂轨迹跟踪表现更优,具有可行性和优越性.
High Order Sliding Mode Control of Manipulator Based on Neural Network
Aiming at the chattering problems of unknown model parameters and external interference in the design of multi-joint manipulator control system,a high-order sliding mode control based on neural network was pro-posed.Based on the fast terminal sliding mode surface,saturation function was used to solve the singular problem,and radial basis neural network(RBFNN)was used to approximate the system parameters.An error estimator is added to compensate for estimation errors and external interference.At the same time,an adaptive finite time con-trol law with appropriate updating law is designed.The experimental results show that the control method is more feasible and advantageous in trajectory tracking of robot arm.

robot manipulatorradial basis function neural networkhigh order sliding modeterminal sliding mode control

谌雪刚

展开 >

上海大学机电工程与自动化学院

机械臂 径向基神经网络 高阶滑模 终端滑模控制

国家重点研发计划

2018YFB1309200

2024

计量与测试技术
成都市计量监督检定测试所

计量与测试技术

影响因子:0.175
ISSN:1004-6941
年,卷(期):2024.51(3)
  • 11