首页|基于点线特征融合的视觉惯性里程计方法研究

基于点线特征融合的视觉惯性里程计方法研究

扫码查看
相机和惯性测量单元组成的基于图像点特征的视觉惯性里程计(Visual Inertial Odometry,VIO),广泛应用于移动机器人定位领域,但会面临点特征退化的问题,使其定位精度受到很大影响.因此,本文提出一种基于点线特征融合的VIO方法,并在EuRoC数据集上进行实验.结果表明:该方法不仅定位精度最优,而且线特征提取的时间较低.
Research on Visual-inertial Odometry Method Based on Point-line Feature Fusion
Visual Inertial Odometry(VIO),composed of cameras and inertial measurement units based on image point features,is widely used in the positioning field of mobile robots,but it faces the problem of point feature degra-dation,which greatly affects its positioning accuracy.Therefore,a VIO method based on point-and-line feature fu-sion is proposed in this paper,and experiments are conducted on the EuRoC dataset.The results show that this method not only has the best positioning accuracy,but also the time of line feature extraction is low.

mobile robot localizationvisual-inertial odometrypoint-line feature fusionfast line feature extraction

田应仲、刘伊铭、杨晓东、倪雨嘉、李龙

展开 >

上海大学机电工程与自动化学院

上海市儿童医院

移动机器人定位 视觉惯性里程计 点线特征融合 快速线特征提取

2024

计量与测试技术
成都市计量监督检定测试所

计量与测试技术

影响因子:0.175
ISSN:1004-6941
年,卷(期):2024.51(3)
  • 9