首页|移动机器人目标跟随系统跟踪恢复研究

移动机器人目标跟随系统跟踪恢复研究

扫码查看
在移动机器人的目标跟随任务中,核相关滤波(KCF)算法因具有高效性而被广泛应用,但传统KCF常因目标遮挡等原因,导致跟随任务失败.因此,本文提出一种跟踪质量评估的方法,并结合YOLOv4-tiny算法,根据目标位置信息设计底盘运动控制策略,在机器人平台上进行实验.结果证明:该改进算法可赋予机器人在跟踪失效情况下的感知和恢复能力.
Research on Tracking and Recovery of Mobile Robot Target Following System
Kernel correlation filtering(KCF)algorithm is widely used in target following tasks of mobile robots be-cause of its high efficiency,but traditional KCF often fails due to target occlusion and other reasons.Therefore,a tracking quality assessment method is proposed in this paper,and combined with the YOLOv4-tiny algorithm,the chassis motion control strategy is designed according to the target position information,and the experiment is carried out on the robot platform.The results show that the improved algorithm can give the robot the ability of sensing and recovery in the case of tracking failure.

mobile RobotsKCFtracking quality assessmenttracking recoveryYOLOv4-tiny

颜疆湾、汪地

展开 >

上海大学机电工程与自动化学院

移动机器人 KCF 跟踪质量评估 跟踪恢复 YOLOv4-tiny

2024

计量与测试技术
成都市计量监督检定测试所

计量与测试技术

影响因子:0.175
ISSN:1004-6941
年,卷(期):2024.50(9)