首页|基于CEL方法的6005A铝合金搅拌摩擦焊数值模拟研究

基于CEL方法的6005A铝合金搅拌摩擦焊数值模拟研究

扫码查看
目的 研究6005A铝合金搅拌摩擦焊接全过程温度场及焊后残余应力的分布规律.方法 基于耦合的欧拉-拉格朗日(CEL)方法,应用Johnson-Cook本构模型,并采用质量缩放技术,建立搅拌摩擦焊热力耦合仿真模型,模拟分析6005A铝合金搅拌摩擦焊不同阶段的温度场变化和焊后应力分布情况.通过红外热像仪温度场试验、X射线应力场试验和宏观形貌试验,对数值模型进行验证.结果 在下压与预热停留阶段,温度快速升高至545 ℃,且呈对称分布;在焊接阶段,焊缝区域最高温度为546 ℃,出现在返回侧,返回侧温度略高于前进侧温度,呈不对称分布.焊后残余应力集中在焊缝中心两侧40 mm范围内,垂直于焊缝方向的横向/纵向残余应力分布曲线呈"M"形;残余应力在焊缝两侧呈不对称分布,表现为返回侧残余应力高于前进侧残余应力,其中最大纵向残余应力为-174 MPa,最大横向残余应力为206 MPa,应力最大点均出现在返回侧.待测点实测温度与模拟温度误差不超过5%;待测点实测残余应力与仿真值吻合较好,横/纵向残余应力误差分别为16.3%、16.45%;模拟焊缝与实际焊缝宏观形貌吻合较好.结论 在搅拌摩擦焊过程中,材料流动不充分使返回侧温度略高于前进侧温度,而焊接过程中不均匀的热分布导致焊后残余应力也呈返回侧数值略高于前进侧数值的不对称分布;通过将试验和模拟得出的温度场、应力场、宏观形貌进行对比分析,可知试验与仿真误差较小,数值模型能够反映真实的焊接过程,从而验证了 6005A铝合金CEL数值模型的正确性.
Numerical Simulation of 6005A Aluminum Alloy Friction Stir Welding Based on CEL Method
The work aims to study the distribution law of temperature field and post-weld residual stress in the whole proc-ess of 6005A aluminum alloy stir friction welding.Based on the coupled Euler-Lagrange(CEL)method,Johnson-Cook eigen-structure model and mass scaling technology was used to establish a thermal coupling simulation model to simulate and analyze the temperature field changes and post-weld stress distribution in different stages of 6005A aluminum alloy stir friction welding.The numerical model was validated by an infrared thermography temperature field test,an X-ray stress field test and a macro morphology test.During the downward pressure and preheating dwell stage,the temperature rose rapidly to 545 ℃ and was symmetrically distributed.The highest temperature in the weld area during the welding stage was 546 ℃,which occurred on the return side,and the temperature of the return side was slightly higher than that of the forward side,with an asymmetric distribu-tion.The post-weld residual stress was concentrated in the weld center on both sides of the 40 mm range.That perpendicular to the weld direction of the transverse/longitudinal residual stress distribution curve was in a"M"shape;The residual stress in the weld on both sides of the asymmetric distribution,the performance of the return side of the side was higher than the forward side,which the maximum longitudinal residual stress of-174 MPa,the maximum transverse residual stress of 206 MPa,the maxi-mum stress points all appeared in the return side.The error between the measured and simulated temperatures at the point meas-ured did not exceed 5%.The measured residual stresses at the point to be measured matched well with the simulated values,and the errors of the transverse/longitudinal residual stresses were 16.3%and 16.45%,respectively.And the simulated weld and the actual weld macroscopic morphology were in good agreement.During the process of friction stir welding,the temperature of the return side is slightly higher than that of the forward side due to the insufficient material flow,and the asymmetric distribution of post-weld residual stresses,which is slightly higher than that of the forward side due to the inhomogeneous heat distribution in the process of welding,is also presented.Through the comparative analysis of the temperature field,stress field,and macro-scopic morphology between the experimental and simulated ones,the experimental and simulated errors are relatively small,and the numerical model can reflect the real welding process,thus verifying the good agreement of the 6005A aluminum alloy weld with the actual weld.Thus,the correctness of the numerical model of 6005A aluminum alloy CEL is verified.

friction stir welding6005A aluminum alloyCEL methodtemperature fieldresidual stresses

李娅娜、解飞飞、张生芳

展开 >

大连交通大学中车学院,辽宁大连 116028

大连交通大学机车车辆工程学院,辽宁大连 116028

大连交通大学机械工程学院,辽宁大连 116028

搅拌摩擦焊 6005A铝合金 CEL方法 温度场 残余应力

2025

精密成形工程
中国兵器工业第五九研究所,国防科技工业精密塑性成形技术研究应用中心

精密成形工程

北大核心
影响因子:0.488
ISSN:1674-6457
年,卷(期):2025.17(1)