首页|基于参数自适应DBSCAN算法的浮标位置数据异常检测

基于参数自适应DBSCAN算法的浮标位置数据异常检测

扫码查看
针对遥测遥控系统采集浮标位置数据时易受外在因素的干扰,提出了一种K近邻优化的参数自适应DBSCAN算法,来检测浮标位置数据中的异常点.通过分析数据集的分布特性生成最优邻域距离值ε和邻域内样本点数量MinPts列表,引入卡林斯基-哈拉巴斯指数对列表中的参数进行评分,将最高评分对应的参数作为最优参数,实现DBSCAN算法的自适应聚类.实验结果表明,新算法能够自适应选择最优参数,对浮标遥测位置数据的异常点进行有效检测.
Buoy Position Data Abnormaly Detection Based on Parameter Adaptive DBSCAN Algorithm
In the process of using the telemetry and remote-control system to collect data,it is easy to be disturbed by external factors and generate abnormal location data.To address this problem,a K-nearest neigh-bor optimized parameter adaptive DBSCAN algorithm is proposed to detect the anomalies in buoy position data.The algorithm proposed generates a list of optimal distance values ε in adjacent waters and the number of sam-ple points MinPts through the analysis of the distribution characteristics of the dataset,and the introduction of the Calinsky-Harabas index to score the parameters in the list,and the parameter corresponding to the highest score is used as the optimal parameter to realize the adaptive clustering of DBSCAN algorithm.The experimen-tal results show that the proposed algorithm can adaptively select the optimal parameters and realize the detec-tion of abnormal buoy telemetry position data.

buoy positionabnormal detectiontelemetry and remote control systemDBSCAN algorithmK-nearest neighbor algorithmCH index

章新亮、肖虹、周世波

展开 >

集美大学航海学院,福建 厦门 361021

浮标位置 异常检测 遥测遥控系统 DBSCAN算法 K近邻算法 CH指数

福建省自然科学基金项目船舶辅助导航技术国家地方联合工程研究中心开放课题集美大学博士启动基金项目

2020J01658HHXY2020002ZQ2019012

2024

集美大学学报(自然科学版)
集美大学

集美大学学报(自然科学版)

影响因子:0.293
ISSN:1007-7405
年,卷(期):2024.29(1)
  • 19