首页|利用SE-GPR模型对甲醇/柴油混合燃料柴油机性能的预测

利用SE-GPR模型对甲醇/柴油混合燃料柴油机性能的预测

扫码查看
为了对柴油机的经济性和排放参数进行高效、准确的预测,根据4190型船用柴油机实验数据与边界参数,建立AVL-BOOST甲醇/柴油混合燃料柴油机仿真模型;利用模型进行仿真实验,并建立甲醇掺混比、废气再循环(exhaust gas recirculation,EGR)率、喷油提前角和进气压力4个控制参数对有效油耗率和NOx排放预测数据集;利用该数据集对5种不同核函数的高斯过程回归(Gaussian process regression,GPR)模型进行训练;最后将最优的平方指数高斯过程回归(squared exponential-Gaussian process regression,SE-GPR)模型、AVL-BOOST仿真数据和柴油机实验数据进行对比.结果表明:在数据量为180组时,SE-GPR模型对有效油耗率和NOx排放均取得拟合关联度99%以上,均方根误差(root mean square error,RMSE)分别为 1.859,0.344 5,平均绝对误差(mean absolute error,MAE)分别为 0.954,0.248 9;并且,相较于AVL-BOOST仿真实验,SE-GPR模型对实验数据具有更好的拟合性.
Performance Prediction of Methanol/Diesel Blended Diesel Engine Based on SE-GPR Model
In order to efficiently and accurately predict diesel engine economy and emission parameters,based on the experimental data of the 4190 type marine diesel engine and boundary parameters,an AVL-BOOST simulation model for diesel engines utilizing methanol/diesel blended fuels was established,and a data-set for predicting effective fuel consumption and NOx emissions was created by using this model,incorporating four operational parameters:methanol blending ratio,exhaust gas recirculation(EGR)rate,injection advance angle,and intake pressure.The dataset was employed to train Gaussian process regression(GPR)models with five different kernel functions.Finally,the best-performing squared exponential Gaussian process regression(SE-GPR)model was compared with AVL-BOOST simulation data and diesel engine experimental data.The results showed that the SE-GPR model achieves a correlation of over 99%for both effective fuel consumption and NOx emissions when the dataset contains 180 data sets,with root mean square error(RMSE)values of 1.859,0.344 5,and mean absolute error(MAE)values of 0.954,0.248 9.Moreover,compared to AVL-BOOST simulation experiments,the SE-GPR model exhibits a better fit to the experimental data.

marine diesel enginemethanolGaussian process regressionsquared exponential kernelper-formance prediction

范金宇、才正、黄朝霞、杨晨曦、李品芳、黄加亮

展开 >

集美大学轮机工程学院,福建厦门 361021

福建省船舶与海洋工程重点实验室,福建厦门 361021

集美大学理学院,福建厦门 361021

船用柴油机 甲醇 高斯过程回归 平方指数核函数 性能预测

福建省自然科学基金福建省自然科学基金福建省教育厅项目

2022J018122021J01849JAT210237

2024

集美大学学报(自然科学版)
集美大学

集美大学学报(自然科学版)

影响因子:0.293
ISSN:1007-7405
年,卷(期):2024.29(2)
  • 19