首页|Caputo-Hadamard时间分数阶反应扩散方程的L1格式差分逼近

Caputo-Hadamard时间分数阶反应扩散方程的L1格式差分逼近

扫码查看
提出一种求 Caputo-Hadamard 时间分数阶反应扩散方程的数值解法.将一阶的时间导数用Caputo-Hadamard导数替换,再对Caputo-Hadamard时间分数阶导数采用L1 插值逼近离散;利用中心差分公式离散空间二阶导数,构造方程的数值离散格式,并证明该数值格式具有稳定性和收敛性.之后利用Rich-ardson外推法进一步提高空间精度,并给出具体算法,使方程新的差分格式达到空间方向四阶收敛.最后给出一个数值算例,证明该数值格式的有效性.
L1 Scheme Difference Approximation for Caputo-Hadamard Time Fractional Reaction-Diffusion Equation
A numerical method for solving Caputo-Hadamard time fractional reaction-diffusion equation was presented in this paper.The first order time derivative was replaced by the Caputo-Hadamard derivative and then the Caputo-Hadamard time fractional derivative was approximated by L1 interpolation.The second de-rivative of space was discretized by the central difference formula,and the numerical discretization scheme of the equation was constructed.It was proved that the numerical scheme was stability and convergence.Then Richardson extrapolation was applied to further improve the spatial accuracy,and a specific algorithm was pres-ented to make the new difference scheme reach fourth order convergence in space direction.Finally,a numeri-cal example was implemented to test the efficiency of the numerical scheme.

fractional reaction-diffusion equationCaputo-Hadamard derivativeL1 schemeRichardson ex-trapolationstabilityconvergence

刘欣然、陈景华、龚珊珊

展开 >

集美大学理学院,福建 厦门 361021

分数阶反应扩散方程 Caputo-Hadamard导数 L1格式 Richardson外推法 稳定性 收敛性

2024

集美大学学报(自然科学版)
集美大学

集美大学学报(自然科学版)

影响因子:0.293
ISSN:1007-7405
年,卷(期):2024.29(6)