首页|一类高斯过程的碰撞概率

一类高斯过程的碰撞概率

扫码查看
令X={X(t),t∈R}是由X(t)=(X1(t),…,Xd(t))(∀t∈R)定义在Rd 上的高斯过程,其中X1,…,Xd独立同分布于一个实值高斯过程X0={X0(t),t∈R},且E[(X0(t)-X0(s))2]≈γ2(|t-s|)(f ≈g表示存在常数c,使得c-1g≤f≤cg),γ是满足一定条件且具有上下指数的函数.利用γ的上下指数研究该过程碰撞概率,其上界的Hausdorff测度由γ的上指数α*确定,而下界的容量由下指数α*确定.
Hitting Probabilities for a Class of Gaussian Processes
Let X={X(t),t∈R}be a Gaussian process with values in Rd defined by X(t)=(X1(t),…,Xd(t))(∀t ∈ R),where X1,…,Xd are independent copies of a real-valued Gaussian process X0={X0(t),t∈R}and E[(X0(t)-X0(s))2]≈ γ2(|t-s|)(f ≈g indicates that there is a constant c,such that c-1g≤f≤cg),γ is a function that satisfies certain conditions and has upper and lower indices.The purpose of this paper is to study the hitting probabilities of the process by using the upper and lower indices of γ.The Haus-dorff measure of the upper bound is determined by the upper indices α*of the function γ,and the capacity of lower bound by the lower indices α*.

hitting probabilitiesGaussian processescapacityHausdorff measureupper indiceslower in-dices

朱燕芹、倪文清

展开 >

集美大学理学院,福建 厦门 361021

碰撞概率 高斯过程 容量 Hausdorff测度 上指数 下指数

2024

集美大学学报(自然科学版)
集美大学

集美大学学报(自然科学版)

影响因子:0.293
ISSN:1007-7405
年,卷(期):2024.29(6)