首页|改进CRNN的车牌识别方法

改进CRNN的车牌识别方法

扫码查看
针对传统车牌识别方法在车牌模糊和光照复杂的场景下难以快速准确识别车牌信息的问题,为提高网络的特征提取能力,将带残差的ResNet引入卷积循环神经网络(convolutional recurrent neural network,CRNN),提出了CRNN ResNet车牌文本识别算法.该方法仅需 0.012 s就能完成一张车牌图像的识别,在CCPD公开数据集上的识别准确率达到了98.5%.
License Plate Recognition Based on CRNN
Aiming at the problem that the traditional license plate recognition method was difficult to rec-ognize license plate information quickly and accurately under the scene of fuzzy license plate and complex illu-mination,a fast license plate recognition method based on improved convolutional recurrent neural network(CRNN)was proposed.By introducing ResNet with residual into CRNN to improve the feature extraction abili-ty of the network,this new method was named CRNN ResNet license plate text recognition algorithm.This method only needed 0.012 s to recognize a license plate image,and the recognition accuracy reached 98.5%on the open data set of Chinese City Parking Dataset(CCPD).

license plate recognitiondeep neural networkconvolutional recurrent neural network(CRNN)

林立雄、庄裕富、何洪钦、郑佳春

展开 >

集美大学海洋信息工程学院,福建 厦门 361021

福州大学机械工程及自动化学院,福建 福州 350108

浙江大华技术股份有限公司,浙江 杭州 310051

车牌识别 深度神经网络 卷积循环神经网络

2024

集美大学学报(自然科学版)
集美大学

集美大学学报(自然科学版)

影响因子:0.293
ISSN:1007-7405
年,卷(期):2024.29(6)