首页|基于多尺度特征融合的遥感影像场景分类方法

基于多尺度特征融合的遥感影像场景分类方法

扫码查看
针对遥感场景影像存在类间相似性高、类内多样性大、且不同尺度下遥感影像差异大等问题,导致场景分类任务精确度受限,提出一种基于多尺度特征融合的遥感影像场景分类算法.首先利用轻量级网络MobileNetV2作为主干网络,以更少的网络参数实现更高的分类准确率.网络通过一维卷积提升输入通道,设计的多尺度特征融合模块能够捕获遥感影像的高级特征和低级特征,融合影像的多尺度特征,能够有效缓解不同尺度下遥感影像差异大的问题.通过在三个公开遥感数据集上进行实验对比,验证了所提方法的有效性.
Scene Classification Method of Remote Sensing Image Based on Multi—scale Feature Fusion
Aiming at the problems such as high inter-class similarity,large intra-class diversi-ty,and large difference of remote sensing images at different scales,which lead to the limited accuracy of scene classification tasks,a multi-scale feature fusion based remote sensing image scene classifica-tion algorithm is proposed.Firstly,MobileNetV2,a lightweight network,is used as the backbone net-work to achieve higher classification accuracy with fewer network parameters.The network improves the input channel through one-dimensional convolution.The multi-scale feature fusion module de-signed in this paper can capture the high-level features and low-level features of remote sensing ima-ges,and the fusion of multi-scale features of remote sensing images can alleviate effectively the prob-lem of large differences in remote sensing images at different scales.The effectiveness of the proposed method is verified by experiments on three open remote sensing datasets.

remote sensing image scene classificationmulti-scale feature fusionfeature fusiondeep learning

秦望博、葛斌

展开 >

安徽理工大学计算机科学与工程学院,安徽淮南 232000

遥感影像场景分类 多尺度特征融合 特征融合 深度学习

国家自然科学基金国家重点研发计划安徽省自然科学基金安徽省博士后基金

621020032020YFB13141032108085QF2582022B623

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(1)
  • 10