首页|基于对比学习的暴力检测算法研究

基于对比学习的暴力检测算法研究

扫码查看
针对现有暴力检测模型实际部署中存在数据标注成本高,提出基于对比学习的半监督模型训练框架,利用对比学习训练模型的表征能力,对比样本采用基于速度和基于全局和局部对比生成方式,对比框架在大量正负样本对比基础上增加正例样本间对比数量,同时利用伪标注对模型进行微调.实验结果显示,对比学习能够帮助模型在RWF2000和RVLS 5%训练数据下提升了 3.9%,2.55%准确率,微调阶段能在RWF2000 25%训练数据下帮助模型进一步提升约3%准确率.
Research on Violence Detection Algorithm Based on Contrastive Learning
Aiming at the high cost of data labeling in the actual deployment of the existing violence detection model,a semi-supervised model training framework based on contrastive learning was pro-posed.The representation ability of the contrastive learning training model was used,and the contras-tive samples were generated based on speed,global and local contrast.At the same time,the pseudo-annotations are used to fine tune the model.The experimental results show that the contrastive learning can help the model improve the accuracy by 3.9%and 2.55%under the RWF2000 and RVLS 5%train-ing data,and the fine tuning stage can help the model further improve the accuracy by about 3%under the RWF2000 25%training data.

violent detectioncontrastive learningsemi-supervised learning

孙国林、陈文龙、王泓宇、陈远磊、周明航

展开 >

电子科技大学,四川成都 611731

暴力检测 对比学习 半监督学习

四川省科技计划项目宜宾科技计划项目厅市共建智能终端四川省重点实验室厅市共建智能终端四川省重点实验室

2020YFQ0025DZKJDX2021020005SCITLAB-1018SCITLAB-20019

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(1)
  • 12