首页|基于GA-SA算法的机器人几何参数误差辨识

基于GA-SA算法的机器人几何参数误差辨识

扫码查看
几何参数误差对机器人末端绝对定位精度影响最大,而几何误差参数辨识是一个高维非线性问题,求解困难,所以建立一种简单高效的辨识算法是有必要的,本文提出了遗传模拟退火算法(GA-SA)对机器人几何参数误差辨识.以机器人末端位姿误差最小为 目标,采用遗传模拟退火算法辨识机器人几何参数误差,以ABB IRB120为算例迭代1100次,遗传算法在200代陷入局部最优,模拟退火参与后最终适应度为0.0914.误差补偿结果表明:机器人末端位置误差沿X,Y,Z轴方向分别降低了 88.05%,81.73%,83.72%,姿态误差分别降低了 93.92%,83.64%,83.44%,证明遗传模拟退火算法可以有效辨识机器人几何参数误差,提高误差补偿后的机器人末端位姿精度.
Error Identification of Robot Geometric Parameters Based on GA-SA Algorithm
The geometric parameter error has the greatest influence on the absolute positioning ac-curacy of the robot end,and the geometric error parameter identification is a high-dimensional nonlin-ear problem,which is difficult to solve,so it is necessary to establish a simple and efficient identification algorithm,and this paper proposes the Genetic Simulated Annealing Algorithm(GA-SA)for the iden-tification of the robot geometric parameter error.With the goal of minimizing the robot end position er-ror,the genetic simulated annealing algorithm is used to identify the robot geometric parameter error.1100 iterations of ABB IRB120 are used as an example,and the genetic algorithm falls into the local op-timum in 200 generations,and the final fitness after simulated annealing is 0.0914.The results of the error compensation show that the robot end position error along the axial direction is reduced by 88.05%,81.73%,83.72%,and the attitude error is reduced by 93.92%,83.64%,83.44%,respectively,which proves that the genetic simulated annealing algorithm can effectively identify the robot geometric parameter errors and improve the robot end position accuracy after error compensation.

robot error modelparameter identificationGA-SAerror compensation

朱振权、殷宝麟、潘瑞冬、郑春雷

展开 >

佳木斯大学机械工程学院,黑龙江佳木斯 154007

机器人误差模型 参数辨识 遗传模拟退火算法 误差补偿

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(1)
  • 14