首页|多信息融合特征下的发动机故障自动化诊断研究

多信息融合特征下的发动机故障自动化诊断研究

扫码查看
发动机工作过程的复杂性以及其故障诊断信息的繁杂性使得单一传感器难以较好识别与诊断故障问题.故研究对数据层、特征层以及诊断层进行多信息融合,并基于最大信息特征和主成分分析提出诊断模型.实验结果表明,模型对不同故障类型的数据提取偏差值低于5%,且其误差性能(<0.06%)和测试精度明显优于其他对比算法.多信息融合特征诊断算法能有效对发动机设备进行故障诊断,并提供新维修思路.
Research on Automatic Engine Fault Diagnosis Based on Multi Information Fusion Feature
The complexity of the engine process and the complexity of its fault diagnosis informa-tion make it difficult to identify and diagnose fault problems with a single sensor.The study therefore proposes a multi-information fusion of the data,feature and diagnostic layers,and proposes a diagnos-tic model based on maximum information features and principal component analysis.The experimental results show that the model has a deviation value of less than 5%for data extraction of different fault types,and its error performance(<0.06%)and testing accuracy are significantly better than other comparative algorithms.The multi-information fusion feature diagnosis algorithm can effectively diag-nose faults in engine equipment and provide new maintenance ideas.

multi information fusionenginefault diagnosisautomationfeature recognitionD-S evidence theory

徐桥桥

展开 >

延安大学,陕西延安 716000

多信息融合 发动机 故障诊断 自动化 特征识别 D-S证据理论

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(1)
  • 8