首页|分层特征融合引导的伪装目标检测网络

分层特征融合引导的伪装目标检测网络

扫码查看
由于伪装目标和背景之间纹理差异细微、边界区分度不高,使得现有方法无法得到区域完整且边界清晰的预测图像.为了解决上述问题,提出分层特征融合引导的伪装目标检测网络.首先利用残差网络对伪装目标的原始特征进行充分提取避免特征的遗漏;然后利用含有丰富语义信息的高层特征以自顶向下的方式指导低层特征的融合,并引入注意力机制给予关键特征更大的权重;最后利用得到的伪装目标鉴别性特征生成区域完整边界清晰的预测图像.在三个基准数据集上的实验结果优于现有的8种方法,并且生成的预测图像更接近真实结果.
Hierarchical Feature Fusion Guided Camouflaged Object Detection Network
Existing methods fail to produce region-complete and boundary-clear prediction im-age in camouflaged object detection due to subtle texture differences and low boundary distinction be-tween camouflaged object and backgrounds.To address this issue,a hierarchical feature fusion-guided camouflaged object detection network is proposed.Firstly,the original features of camouflaged object are fully extracted using a residual network to avoid feature missing.Then,high-level features with rich semantic information guide the fusion of low-level features in a top-down manner,and an atten-tion mechanism is introduced to give more weight to critical features.Finally,region-complete and boundary-clear prediction images are generated by using discriminative features of camouflaged ob-jects.Experimental performance on three benchmark datasets surpasses 8 existing methods,and the generated prediction images are closer to the ground truth.

camouflaged object detectionfeature fusionattention mechanismshigh-level fea-tures

吴涛林、葛斌

展开 >

安徽理工大学计算机科学与工程学院,安徽淮南 232001

伪装目标检测 特征融合 注意力机制 高层特征

国家自然科学基金项目国家重点研发计划项目

518740032020YFB1314103

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(2)
  • 10