首页|一种智能化漏洞风险级别动态评估方法

一种智能化漏洞风险级别动态评估方法

扫码查看
网络安全所关注的重要内容之一就是漏洞的危害程度.目前已经有很多漏洞的评估算法,但是由于基于固化的公式计算处理手段,往往无法对漏洞的价值进行实时动态评估.通过分析当前漏洞评价方法存在的问题和不足,提出了基于双向LSTM和SVM的漏洞评分方法,包括数据预处理、特征选择、模型构建和实验验证.实验结果表明,基于BiLSTM-SVM的方法能够对漏洞进行准确的分类和预测,实现了对漏洞价值评价准确性的提高,为漏洞管理提供一种更加有效的动态评估方法.
An AI-Based Dynamic Vulnerability Assessment
Vulnerability assessment is a foundational and important work for network security.There are many existing vulnerability evaluation algorithms,but most of them are based on fixed formu-las,so it is often unable to conduct real-time and dynamic evaluation on vulnerabilities.By analyzing the existing problems and deficiencies of the current vulnerability evaluation methods,this paper propo-ses the basic principle and algorithm flow based on bidirectional LSTM and SVM,including data pre-processing,feature selection,model construction,model construction and experimental verification.The experimental results show that BiLSTM-SVM can accurately classify and predict vulnerabilities,improve the accuracy and efficiency of vulnerability evaluation,and thus provide a powerful and more ef-fective assessment method support for vulnerability management.

artificial intelligencebidirectional LSTMSVMnetwork securityvulnerability ex-ploitability assessment

郝伟、万飞

展开 >

安徽理工大学计算机科学与工程学院,安徽淮南 232991

北京华云安信息技术有限公司,北京 100084

人工智能 双向LSTM SVM 网络安全 漏洞可利用性评估

安徽省自然科学基金

2008085MF220

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(2)
  • 11