首页|导数在最优化问题中的运用

导数在最优化问题中的运用

扫码查看
导数是微积分的重要基础概念之一,反映的是一个量随另一个量变化的快慢程度.因此在数学上导数是研究函数图像与性质的一个非常重要的工具,在研究函数的过程中有着不可替代的作用.在物理学领域可以表示为瞬时速度或加速度;在经济学中常用来进行边际分析,以便做出最优生产决策."变"是客观世界的基本属性,任何变化的事物,都可以通过导数求出它们的"瞬态".从多角度举例说明导数在不同领域中的广泛运用.
The Application of Derivative in Optimization Problems
Derivative is one of the fundamental concepts of calculus.It reflects the speed with which one quantity changes with another quantity.Therefore,in mathematics,it is a very important tool to study the image and properties of functions,and plays an irreplaceable role in the process of stud-ying functions.In physics it can be expressed as instantaneous velocity or acceleration.It is often used in economics for marginal analysis in order to make optimal production decisions."Change"is the basic property of the objective world,and anything that changes can be found out its"Instantaneous state"by derivative.This paper illustrates the wide application of derivatives in different fields from many angles.

derivativefunctionmarginal analysisoptimization

王真

展开 >

许昌电气职业学院公共教学部,河南许昌 461000

导数 函数 边际分析 最优化

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(2)
  • 3