首页|基于融合NCG法的协同过滤系统的实现

基于融合NCG法的协同过滤系统的实现

扫码查看
Spark是高速高效高准确率的基于内存的计算引擎,MLlib是内置机器学习算法库,该库在集群环境下实现并行计算,将数据以RDD形式表示,然后在分布式集群内调用机器学习算法,主要核心功能有特征提取、回归分类、聚类、统计分析和模型评估等,本文将引用Spark MLlib进行电影数据分析的经典算法案例,融合非线性共轭梯度(NCG)法改进了 ALS协同过滤推荐算法,减少了迭代次数、提高了推荐系统的效率,在对海量大数据进行实时分类、查询的场景中具有指导意义[1].
Implementation of Collaborative Filtering System Based on Fusion NCG Method
Spark is a memory based computing engine with high speed,efficiency and accuracy.MLlib is a built-in machine learning algorithm library.The library realizes parallel computing in a cluster environment,represents data in RDD form,and then calls machine learning algorithms in a dis-tributed cluster.The main core functions are feature extraction,regression classification,clustering,statistical analysis and model evaluation.This paper will cite the classic algorithm cases of spark MLlib for film data analysis,integrating the nonlinear conjugate gradient(NCG)method improves the ALS collaborative filtering recommendation algorithm,reduces the number of iterations,improves the effi-ciency of the recommendation system,and has guiding significance in the scene of real-time classifica-tion and query of massive big data.

Spark MLlibNCG algorithmALS collaborative filtering algorithm

胡晶

展开 >

福建船政交通职业学院,福建福州 350007

Spark MLlib NCG算法 ALS协同过滤算法

2020年第二批中国高校产学研创新基金

2020ITA03033

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(3)
  • 8