首页|基于深度强化学习的交通标识检测算法优化与实践研究

基于深度强化学习的交通标识检测算法优化与实践研究

扫码查看
交通标识是道路交通系统的重要组成部分,在实际应用中,交通标识主要存在于室外,极易受到光照、雨雾等因素的影响,导致图像采集质量参差不齐.同时,由于拍摄角度、距离、对焦等因素的影响,获取的图像不够高清,这对交通标识的检测带来巨大挑战.为了解决交通标识检测问题,在深度强化学习基础上,结合当下经典目标检测算法进行深入分析,以YOLOv5,YOLOv5-Tiny作为基础网络模型,经过算法改进与优化,结果表明交通标识检测精度得到较大的提升,可以在复杂的环境条件下精准地对交通标识进行检测,并且检测具有较强的实时性以及较高的实用价值,符合交通标识检测对算法精度的要求.
Optimization and Practical Research on Traffic Sign Detection Algorithm Based on Deep Reinforcement Learning
Traffic signs are an important component of road traffic systems.In practical applica-tions,traffic signs mainly exist outdoors and are easily affected by factors such as light,rain,and fog,resulting in uneven image acquisition quality.At the same time,due to factors such as shooting angle,distance,and focus,the obtained images are not high-definition enough,which poses a huge challenge to traffic sign detection.In order to solve the problem of traffic sign detection,based on deep reinforce-ment learning and combined with current classic object detection algorithms,in-depth analysis was conducted using YOLOv5 and YOL()v5-Tiny as basic network models.After algorithm improvement and optimization,the results showed that the accuracy of traffic sign detection was greatly improved,and it can accurately detect traffic signs in complex environmental conditions,and the detection has strong real-time performance and high practical value,which meets the requirements of algorithm ac-curacy for traffic sign detection.

deep reinforcement learningtraffic sign detectionalgorithm

胡涛、申邵林

展开 >

湖南交通工程学院,湖南衡阳 421001

衡阳市时未信息科技有限公司,湖南衡阳 421001

深度强化学习 交通标识检测 算法

湖南省教育厅教学改革研究项目

HNJG-2021-1275

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(3)
  • 8