首页|基于径向基函数神经网络的大学生体测成绩预测研究

基于径向基函数神经网络的大学生体测成绩预测研究

扫码查看
大学生体质健康测试成绩是评价学生体质健康的重要标准,科学有效地对体测成绩进行预测分析是其他研究的基础.该研究运用径向基函数神经网络对某大学XX学院学生2022年体质健康测试数据进行预测和分析,并与BP神经网络、支持向量机等方法分类预测结果进行对比.试验结果表明,该预测模型具有较高的预测准确率和较好的泛化性能,为后续体育教师开展教学,相关学者开展研究提供了科学有效的分析方法.
Prediction of College Students'Physical Test Scores Based on Radial Basis Function Neural Network
The scores of physical fitness tests for college students are important indicators for e-valuating their physical health.Scientific and effective prediction and analysis of physical fitness test scores serve as the basis for other research.In this paper,a prediction method for college student physi-cal fitness test scores based on Radial Basis Function Neural Networks(RBFNN)is proposed.The RBFNN is used to predict and analyze the physical fitness test data of students of a certain university in 2022,and the classification prediction results are compared with those of Back Propagation Neural Net-work(BPNN),Support Vector Machines(SVM),and other methods.The experimental results dem-onstrate that the proposed prediction model based on RBFNN exhibits high prediction accuracy and good generalization performance for college student physical fitness test scores.It provides a scientifically ef-fective analysis method for physical education teachers'teaching and researchers'subsequent studies.

Radial Basis Function Neural Networksphysical health testgrade prediction

方俊杰、李凤双、刘永明、赵转哲、谢叶寿

展开 >

安徽工程大学体育学院,安徽芜湖 241000

安徽工程大学人工智能学院,安徽芜湖 241000

智能装备质量与可靠性安徽省联合共建学科重点实验室,安徽芜湖 241000

径向基函数神经网络 体质健康测试 成绩预测

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(3)
  • 10