首页|基于YOLOv5s融合注意力机制的轻量化行人检测算法

基于YOLOv5s融合注意力机制的轻量化行人检测算法

扫码查看
基于YOLOv5s算法的行人检测技术在自动驾驶方面具有广泛应用,对YOLOv5s算法进行轻量化可以节省计算资源、存储空间和传输带宽,该项工作具有重要的实际意义.为提高模型对关键特征的关注能力,在骨干网络中增加CBAM注意力机制以抑制无效信息;同时,为大幅降低模型的复杂度、参数量和计算量,引入GhostNet网络中的Ghost结构代替YOLOv5s原有的卷积和Neck模块的C3结构.为了验证轻量化后算法的优势,基于PASCAL VOC 2007数据集、WiderPerson数据集对原YOLOv5s以及改进算法进行测试.实验结果表明,轻量化算法能够大幅度降低参数量、计算量,同时保证了 YOLOv5s算法原有的检测识别准确率.
Lightweight Pedestrian Detection Algorithm Based on YOLOv5s Fused Attention Mechanism
The pedestrian detection technology based on YOLOv5s algorithm has been widely ap-plied in autonomous driving.Lightweight improvements on YOLOv5s algorithm can be reduced compu-tational resources,storage space,and transmission bandwidth.This work is of great practical signifi-cance.To enhance the model's attention to key features,a CBAM attention mechanism can be fused into the backbone network to suppress irrelevant information.Simultaneously,to reduce model complexity,parameter count,and computational requirements,a Ghost structure of GhostNet network is incorpo-rated to replace the original convolutional of YOLOv5s and C3 structure of Neck module.To verify the advantages of the lightweight algorithm,based on PASCAL VOC 2007 dataset and WiderPerson data-set,the original YOLOv5s and the improved algorithm are tested.The results demonstrate that the lightweight algorithm can greatly reduce parameter count and computational requirements while maintai-ning the detection and recognition accuracy of the original YOLOv5s algorithm.

YOLOv5pedestrian detectionattention mechanismlightweight model

朱立志、韦慧

展开 >

安徽理工大学数学与大数据学院,安徽淮南 232001

YOLOv5 行人检测 注意力机制 轻量化模型

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(8)