首页|一种改进的暗通道先验低光照图像增强算法

一种改进的暗通道先验低光照图像增强算法

扫码查看
针对低光照图像增强算法常见的亮度不均匀、色彩失真、图像噪点较多、细节不清晰等问题,提出了一种改进的暗通道先验低光照图像增强算法.该方法对像素值取反后的低光照图像,首先采用引导滤波,解决图像在运用最小值滤波计算暗通道时引起的块效应,其次在剔除像素为255的纯白色点干扰后进行大气光值的计算,然后引入细化系数进行透射率自适应修正使透射率更加平滑,最后采用非局部平均滤波进行噪声去除.实验表明,所提出的算法使图像的亮度增强合适,细节清晰,在Low-Light弱光图像数据集上测试图片,所得到的SSIM值比对比算法提升20.5%,PSNR值提升19.9%,无论从主观感受,还是客观评价指标等各方面,都有优化.
Low Illumination Image Enhancement Algorithm Based on Improved Dark Channel Prior
Aiming at the problems of color distortion,uneven brightness and high noise in the en-hancement process of low-illumination images,a low-illumination image enhancement algorithm based on improved dark channel prior is proposed in this paper.The algorithm is based on the fact that the inverted low-illumination image is similar to a foggy image.For the inverted low-illumination im-age,firstly,the guided filter is used to solve the block effect caused by the image using the minimum filter to calculate the dark channel,and then the pixel is eliminated.Calculate the atmospheric light val-ue after interference with the pure white point of 255,and then introduce the refinement coefficient for adaptive correction of the transmittance to make the transmittance smoother,and finally use non-local average filtering to remove noise.Experiments show that the proposed algorithm is suitable for image brightness enhancement and clear details.When testing pictures on the Low-Light verification set,the obtained SSIM value is 20.5%higher than that of the comparison algorithm,and the PSNR value is 19.9%higher.It is superior to other algorithms compared in terms of subjective experience and objective e-valuation indicators.

low illumination image enhancementdark channel prioradaptive transmission cor-rectionnon-local average filtering

赵玲娜

展开 >

安徽水利水电职业技术学院机电工程学院,安徽合肥 231603

低光照图像增强 暗通道先验 透射率自适应修正 非局部平均滤波

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(8)