首页|基于改进NSA和CNN算法的网络入侵检测方法研究

基于改进NSA和CNN算法的网络入侵检测方法研究

扫码查看
为了解常规网络入侵问题,基于否定选择(Negative Selection Algorithm,NSA)提出一种网络入侵检测模型.考虑到NSA模型精度问题,引入遗传模型优化检测器,同时对数据进行降维改进检测 效果.同时,基于数字识别卷积网络(Convolutional network Le-Net Lene,LeNet-5)构建大规模网络入侵模型,并引入合成数据算法优化.在常规网络入侵检测中,在数据集为20000时,改进NSA模型的分类检测准确率为98.6%,优于另外两种模型.在大规模网络入侵检测中,所提出的大规模入侵检测模型在U2R类型数据集检测中准确率为0.912.可见,所提出网络入侵检测技术具有很好的应用效果,对网络风险预防给出了重要技术参考.
Research on Network Intrusion Detection Method Based on Improved NSA and CNN Algorithms
To understand conventional network intrusion problems,a network intrusion detection model based on Negative Selection Algorithm(NSA)is proposed.Considering the accuracy issue of the NSA model,a genetic model is introduced to optimize the detector,while reducing the dimensionality of the data to improve the detection effect.At the same time,a large-scale network intrusion model is constructed based on Convolutional Network Le-Net Lene(LeNet-5)for digital recognition,and syn-thetic data algorithm optimization is introduced.In conventional network intrusion detection,the classi-fication detection accuracy of the improved NSA model is 98.6%when the dataset is 20000,which is better than the other two models.In large-scale network intrusion detection,the proposed large-scale intrusion detection model has an accuracy of 0.912 in detecting U2R type datasets.It can be seen that the proposed network intrusion detection technology has good application effects and provides important technical references for network risk prevention.

NSALeNet-5network intrusiondetectiontest

杨小龙

展开 >

福州软件职业技术学院智能产业学院,福建福州 350211

NSA LeNet-5 网络入侵:检测 测试

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(8)