首页|基于对抗生成网络的手写数字生成方法研究

基于对抗生成网络的手写数字生成方法研究

扫码查看
提出了 一种基于改进的对抗生成网络(GANs)的手写数字生成方法.通过引入GANs的生成器和判别器,设计了一种创新的网络架构,并采用了一系列训练策略来解决GANs训练中的不稳定性和模式崩溃问题.通过使用MNIST数据集进行实验,结果显示,新模型在准确率上达到了 98%以上.与传统神经网络方法相比,基于改进的对抗生成网络的手写数字识别系统在性能上有显著提升.
Research on Handwritten Digit Generation Method Based on Adversarial Generative Networks
To address these challenges,a handwritten digit generation method based on improved adversarial generation networks(GANs)is proposed.By introducing the generator and discriminator of GANs,an innovative network architecture was designed,and a series of training strategies were adopted to solve the instability and pattern collapse problems in GANs training.Through experiments using the MNIST dataset,the results showed that the new model achieved an accuracy of over 98%.Compared with traditional neural network methods,handwritten digit recognition systems based on improved ad-versarial generative networks have significant performance improvements.

number recognitioncomputer visionneural networksadversarial generative net-work

黄飞、潘洪志

展开 >

安徽商贸职业技术学院信息与人工智能学院,安徽芜湖 241002

安徽师范大学计算机与信息学院,安徽芜湖 241002

数字识别 计算机视觉 神经网络 对抗生成网络

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(9)