首页|基于注意力机制和卷积神经网络的网络安全感知预测

基于注意力机制和卷积神经网络的网络安全感知预测

扫码查看
为了提高网络安全防御效果,注意力机制和卷积神经网络成为研究的热点,但传统方案可能带来模型过拟合、计算和内存开销较大且缺乏空间上下文关系建模的问题.针对上述问题,研究基于注意力机制和卷积神经网络的网络安全感知预测方法,通过加深网络结构、添加dropout层、数据归一化、数据融合四个步骤的改进,最终得到改进挤压与激励网络方案.实验结果表明,该方案收敛速度较快,在65轮迭代后收敛,最终准确率收敛于97.3%.在融合五条数据的情况下,准确率达到最高为97.5%,说明研究建立的网络安全感知预测模型具有较高的准确率以及强大的泛化能力.
Prediction of Network Security Perception Based on Attention Mechanism and Convolutional Neural Network
In order to improve the effectiveness of network security defense,attention mechanism and convolutional neural network have become the focus of research,but the traditional scheme may bring problems such as overfitting model,high computing and memory overhead,and lack of spatial context modeling.To solve the above problems,a network security perception prediction method based on attention mechanism and convolutional neural network is studied.Through four steps of deepening the network structure,adding dropout layer,data normalization,and data fusion,an improved squeeze and excitation network scheme is finally obtained.The experimental results show that the convergence rate of the scheme is fast,and the final accuracy rate is 97.3% after 65 iterations.In the case of fusion of five data,the accuracy rate is up to 97.5%,indicating that the network security perception prediction model established in this study has high accuracy and strong generalization ability.

attention mechanismconvolutional neural networknetwork security perception pre-dictionsqueeze-and-excitation network

张飞

展开 >

阜阳开放大学,安徽阜阳 236000

注意力机制 卷积神经网络 网络安全感知预测 挤压与激励网络

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(9)