首页|基于集成学习算法的moba类游戏胜率预测

基于集成学习算法的moba类游戏胜率预测

扫码查看
随着科技和互联网普及,电子竞技越来越受欢迎,已成为杭州亚运会正式项目,是一项体育竞技.在传统体育行业,如足球、篮球,大数据技术应用相当成熟.对于新兴电竞媒体,运用数据挖掘、机器学习和神经网络预测比赛结果尤为关键.以moba游戏dota2为例进行胜率分析.dota2作为全球著名电竞赛事,拥有大量观众和开放数据.比赛胜负受多种因素影响.从玩家对局数据提取重要特征,利用神经网络训练词向量.对比多种传统与集成学习算法,筛选性能优秀模型.最后利用SHAP模型可视化分析机器学习过程,总结重要特征.助团队决策,提升观众体验.
Winning Rate Prediction for Moba Games Based on Ensemble Learning Algorithms
With the popularization of technology and the Internet,e-sports has become more and more popular.It has become an official event of the Hangzhou Asian Games and a sports competition.In traditional sports industries such as football and basketball,the application of big data technology is quite mature.However,for emerging esports media,the use of data mining,machine learning,and neural networks to predict game results is particularly crucial.Take the moba game dota2 as an example to analyze the winning rate.Dota 2,as a globally renowned esports event,has a large audience and open data.The outcome of a competition is influenced by various factors.Extract important features from player match data and train word vectors using neural networks.Compare multiple traditional and en-semble learning algorithms to select models with excellent performance.Finally,the SHAP model is used to visualize and analyze the machine learning process,summarizing important features.Assist team decision-making and enhance audience experience.

e-gaming mediadata miningmachine learningneural network

赵家池、冯晟、应森昂、蔡雪滢、黄义行、王思仪

展开 >

绍兴文理学院机械与电气工程学院,浙江绍兴 312000

宁波大学信息科学与工程学院,浙江宁波 315000

东华大学计算机科学与技术学院,上海 201600

电竞媒体 数据挖掘 机器学习 神经网络

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(10)