首页|基于图注意力神经网络的面部微表情分类研究

基于图注意力神经网络的面部微表情分类研究

扫码查看
提出了一种基于图注意力神经网络的面部微表情分类方法.该方法主要采用图卷积神经网络对微表情图进行特征提取,同时引入注意力机制与图神经网络结合,为图中的不同节点分配不同的权重以实现更有效的微表情分类.结果表明,采用图注意力神经网络方法对各个微表情的识别率均有所提升,其中,该方法对于开心的识别率高达87.52%,相比于GCN提升了 7.52%.同时该方法对恐惧的识别率为63.27%,相比于GCN提升了 8.61%.说明引入了注意力机制的图注意力神经网络方法具有更高的微表情识别精度.
Research on Facial Microexpression Classification Based on Graph Attention Neural Network
In this paper,a method of facial microexpression classification based on graph attention neural network is proposed.In this method,the image convolutional neural network is mainly used to extract features from the microexpression images,and the attention mechanism is introduced to combine with the image neural network to assign different weights to different nodes in the image to achieve more effective microexpression classification.The results show that the recognition rate of each microexpres-sion is improved by using the graph attention neural network method.Among them,the recognition rate of happy expression is as high as 87.52%,which is 7.52%higher than that of GCN.Meanwhile,the fear recognition rate of this method is 63.27%,which is 8.61%higher than that of GCN.It shows that the graph attention neural network method which introduces attention mechanism has higher preci-sion of micro-expression recognition.

image attentiongraph convolutionfacial microexpressionneural network

马玲玲

展开 >

安徽绿海商务职业学院,安徽 合肥 239000

图注意力 图卷积 面部微表情 神经网络

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(10)