首页|基于时间编码和GNN的商品个性化推荐算法研究

基于时间编码和GNN的商品个性化推荐算法研究

扫码查看
虽然推荐系统能帮助用户筛选出所需产品,进而缓解信息过载问题,但由于当前的推荐系统大多都忽视了数据的稀疏性问题,导致精度欠佳.因此,为了提高推荐精度,研究提出了基于图神经网络和时间编码的会话推荐模型.实验结果显示,在1/4 Yoochoose数据集中,基于图神经网络和时间编码的会话推荐模型Top 20个性化推荐结果的精度和平均倒数排名分别为74.3%和33.9,均高于其他算法.在去除时间编码和语义知识库后,前20个项目的精度分别由74.5%下降至了 71.6%和71.1%,平均倒数排名由34.4分别下降至32.3和30.8.上述结果表明,研究提出的会话推荐模型性能优越,且时间编码和语义知识库能有效提高模型的推荐精度.
Research on the Personalized Product Recommendation Algorithm Based on Time Coding and GNN
Although the recommendation system can help users to screen out the desired prod-ucts,and then alleviate the information overload problem.However,most of the current recommenda-tion systems ignore the sparsity of the data,resulting in poor accuracy.Therefore,to improve recom-mendation accuracy,we propose session recommendation models based on graph neural network and temporal coding.The experimental results show that in the 1/4 Yoochoose data set,the accuracy and average reciprocal ranking of the session recommendation results based on graph neural network and temporal coding were 74.3%and 33.9,respectively,which are higher than the other algorithms.More-over,after removing the temporal coding and semantic knowledge base,the accuracy of the top 20 items decreased from 74.5%to 71.6%and 71.1%,respectively,and the average reciprocal ranking decreased from 34.4 to 32.3 and 30.8,respectively.The above results show that the proposed session recommen-dation model performs well,and the time coding and semantic knowledge base can effectively improve the model recommendation accuracy.

e-commerceconversation recommendationtime codinggraph neural network

马俊、王贤来

展开 >

安徽水利水电职业技术学院,安徽 合肥 230000

安徽大学,安徽 合肥 230000

电子商务 会话推荐 时间编码 图神经网络

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(11)