首页|基于粒子群和蚁群混合算法的城市园林景观植物群落优化配置方法

基于粒子群和蚁群混合算法的城市园林景观植物群落优化配置方法

扫码查看
研究在分析现有植物群落布局形式的基础上,引入粒子群算法和蚁群算法进行最优配置方案的搜寻,最后提出了一种结合两类算法的新型植物种群配置模型.实验结果表明,该模型的全局得分最高为80分,群落得分为85分,加权均值为85分.最短收敛时间为2.5分钟,空间利用率最大为93.5%.综上所述,研究提出的模型能够实现植物群落配置的最优化,并且有望为城市园林规划和景观设计提供一种新的、更科学的植物配置方案.
Optimization of Plant Community Allocation in Urban Landscape Based on Hybrid Particle Swarm and Ant Colony Algorithm
The study introduced particle swarm algorithm and ant colony algorithm for searching the optimal configuration scheme based on analyzing the existing plant community layout forms,and fi-nally proposed a new plant population configuration model combining the two types of algorithms.The experimental results show that the model has the highest global score of 80,the community score of 85,and the weighted mean of 85.The shortest convergence time was 2.5 minutes and the maximum space utilization was 93.5%.In summary,the model proposed in the study can realize the optimization of plant community configuration and is expected to provide a new and more scientific plant configuration scheme for urban garden planning and landscape design.

particle swarm algorithmant colony algorithmurban landscapeplant communityoptimal allocation

曹珊珊

展开 >

宿州职业技术学院,安徽宿州 234000

粒子群算法 蚁群算法 城市园林景观 植物群落 优化配置

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(11)