首页|基于YOLO-Pose的钢筋间距检测

基于YOLO-Pose的钢筋间距检测

扫码查看
为了解决传统钢筋间距测量方法在施工现场复杂背景和噪声下精度不佳的问题,利用YOLO-Pose算法提出了一种新的检测方法.该方法通过深度学习技术识别钢筋交点关键点,相比传统方法具备更高的鲁棒性和适应性.经过对不同检测网络的比较,YOLOv8-Pose模型在钢筋交点检测任务中表现出色,关键点检测平均准确率mAP-kp达到99.3%,FPS为77.实验结果显示,该方法通过像素标定和直径检测,能够精确计算钢筋间距,平均相对误差为2.6%,最大相对误差为8.9%,符合GB50204-2015混凝土结构工程施工质量验收规范标准.
Reinforcement Bar Spacing Detection Based on YOLO-Pose
To address the issue of poor accuracy of traditional methods for measuring steel bar spacing in construction sites due to complex backgrounds and noise,a novel detection method utilizing the YOLO-Pose algorithm is proposed.This method employs deep learning techniques to identify key points of steel bar intersections,exhibiting higher robustness and adaptability compared to conventional approaches.Through comparison among different detection networks,the YOLOv8-Pose model dem-onstrates outstanding performance in steel bar intersection detection tasks,achieving an average preci-sion of key point detection(mAP-kp)of 99.3%and frames per second(FPS)rate of 77.Experimental results indicate that this method,coupled with pixel calibration and diameter detection,enables precise calculation of steel bar spacing with an average relative error of 2.6%and a maximum relative error of 8.9%,complying with the acceptance criteria of the GB50204-2015 code for quality inspection of con-crete structure construction engineering.

reinforcement bar spacing detectionYOLO-Posedeep learningkey point recogni-tionpixel calibratio

林聪功、陈国栋、林鸿强、张雨诗、牟宏霖、林进浔、黄明炜

展开 >

福州大学物理与信息工程学院,福建 福州 350108

南平武沙高速公路有限责任公司,福建南平 353000

福建数博讯信息科技有限公司,福建 福州 350002

中铁十七局集团第六工程有限公司,福建 福州 361009

展开 >

钢筋间距检测 YOLO-Pose 深度学习 关键点识别 像素标定

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(11)