首页|基于协同过滤算法的室内设计家具推荐技术研究

基于协同过滤算法的室内设计家具推荐技术研究

扫码查看
针对传统室内设计家具推荐结果与用户预期存在较大差异的问题,提出基于协同过滤算法的室内设计家具推荐技术研究.根据室内原有风格,结合用户审美喜好,挖掘各元素间的关联规则,设定置信度阈值,缩小处理范围,提取有效信息,过滤后提交检测,并重复规则挖掘过程,利用协同过滤算法,计算用户间相似度,分析用户信任度权重关系,利用最短路径信任权值,推荐合适家具.完成基于协同过滤算法的室内设计家具推荐技术研究后,设计仿真对照实验,利用皮尔逊相关系数对比,反映用户间相似关系,实验结果表明,将协同过滤算法应用到家具推荐当中,能够使用户间的皮尔逊相干值保持在0.7~1.0之间,证实其推荐结果与传统相比,更能达到用户预期,满足用户需求.
Collaborative Filtering Algorithm Based on Interior Design Furniture Recommendation Technology
In view of the difference between the traditional furniture recommendation results and the users'expectations,a collaborative filtering algorithm based furniture recommendation technology research is proposed.Aesthetic preferences,according to the interior of the original style,combining the user mining association rules between the elements,set a confidence threshold,narrowing the scope of processing,extraction of available information,submit testing after filtering,and repeat rule mining process,using collaborative filtering algorithm,to calculate similarity between users,analysis user trust relationship between weight and use the shortest path trust weights,recommend suitable furniture.Complete interior design furniture recommendation technology based on collaborative filtering algorithm research,design and simulation and control experiment,using the Pearson correlation coefficient con-trast,reflect the similar relationship between the user and the experimental results show that the collab-orative filtering algorithm is applied to the furniture is recommended,to Pearson correlation among us-ers value remains between 0.7-1.0,confirm the recommendation results compared with the tradition-al,more can meet customer expectations,to meet user needs.

collaborative filtering algorithminterior designfurniturerecommended technolo-gyHadoop cloud computing platform

汪慧

展开 >

安徽工商职业学院,安徽 合肥 230041

协同过滤算法 室内设计 家具 推荐技术 Hadoop云计算平台

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(11)