首页|结合Transformer和生成对抗网络的英语翻译纠错研究

结合Transformer和生成对抗网络的英语翻译纠错研究

扫码查看
随着经济的发展,英语的重要性在不断地增加.为了对英语翻译中局部和长距离的语法进行纠错,研究设计了 Transformer模型.为了解决Transformer模型面临的损失评估失配问题,研究设计了对抗学习框架,将其和Transformer模型进行了结合,并把Transformer模型当作对抗学习框架的生成器.此外,研究采用了策略梯度方法来处理离散符号序列.结果显示,Transformer模型在精度、召回和F0.5上的最大值分别为64.77,32.03和53.39.结合Trans-former 和对抗网络的模型在精度、召回和F0.5上的最大值分别为75.28,44.37和65.85,皆明显优于对比模型.可见研究所设计的Transformer结合对抗网络的模型具有更好的性能,能够为英语翻译中局部和长距离的语法纠错提供技术上的支持.
Research on English Translation Error Correction by Combining Transformer and Generative Adversarial Networks
With the development of the economy,the importance of English is constantly increas-ing.In order to correct local and long-distance grammar in English translation,a Transformer model was designed for research.In order to solve the loss assessment mismatch problem faced by the Trans-former model,an adversarial learning framework was designed.It was combined with the Transformer model and used as the generator of the adversarial learning framework.In addition,the study employed the strategy gradient method to handle discrete symbol sequences.The results showed that the maxi-mum values of the Transformer model in accuracy,recall,and F0.5 were 64.77,32.03,and 53.39,re-spectively.The maximum values of accuracy,recall,and Fo.5 for the model combining Transformer and adversarial networks are 75.28,44.37,and 65.85,respectively,which are significantly better than the comparison model.It can be seen that the Transformer designed by the research institute combined with adversarial networks has better performance and can provide technical support for local and long-dis-tance grammar correction in English translation.

Transformergenerating adversarial networkserror correctionEnglishtranslate

万玲玲

展开 >

滁州城市职业学院,安徽 滁州 239000

Transformer 生成对抗网络 纠错 英语 翻译

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(11)