首页|基于卷积神经网络的网络小样本数据特征提取

基于卷积神经网络的网络小样本数据特征提取

扫码查看
针对现行的数据特征提取方法存在的错提率较高和可信度较低问题,研究应用基于卷积神经网络设计一种新的网络小样本数据特征提取方法.通过将网络小样本数据在Hibert空间中映射,调整数据相对熵,实现对数据的均衡处理,利用生成对抗网络对小样本数据扩充并修正,利用卷积神经网络对扩充后的数据特征提取,实现基于卷积神经网络的网络小样本数据特征提取.经实验证明,设计方法错提率不超过1%,可信度在0.9以上,可以实现网络小样本数据特征精准提取.
Feature Extraction of Network Small Sample Data Based on Convolutional Neural Network
In response to the problems of high false extraction rate and low credibility in current data feature extraction methods,this study applies a new network small sample data feature extraction method designed based on convolutional neural networks.By mapping small sample data in the Hilbert space and adjusting the relative entropy of the data,balanced processing of the data is achieved.Genera-tive adversarial networks are used to expand and correct the small sample data,and convolutional neural networks are used to extract features from the expanded data,achieving feature extraction of network small sample data based on convolutional neural networks.Experimental results have shown that the er-ror rate of the design method does not exceed 1%,and the reliability is above 0.9,which can achieve ac-curate feature extraction of small sample data in the network.

convolutional neural networknetworksmall sample datafeature extractionHib-ert spacegenerate adversarial networks

张勇、林肖莹

展开 >

闽南师范大学计算机学院,福建漳州 363000

卷积神经网络 网络 小样本数据 特征提取 Hibert空间 生成对抗网络

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(12)