首页|基于深度学习的动画图像纹理细节增强方法研究

基于深度学习的动画图像纹理细节增强方法研究

扫码查看
为提高图像的清晰度与用户体验,引进深度学习算法,设计动画图像纹理细节增强方法.使用滑动窗口计算熵值,将熵值归一化作为权重;利用卷积神经网络(CNN)的多层非线性变换逐步抽象特征信息;使用图像分割技术,将图像分为前景和背景两部分,根据计算得到的图像背景散射程度,进行图像纹理细节的增强处理.实验结果表明:设计方法可以确保构建的动画图像与场景的实际帧数达到设计帧数,即确保场景的流畅度与动画清晰度.
Research on the Texture Detail Enhancement Method of Animation Images Based on Deep Learning
In order to improve the clarity and user experience of the image,the deep learning algo-rithm is introduced to design the texture detail enhancement method of the animated image.The sliding window is used to calculate the entropy,and the entropy is normalized into the weight.The feature in-formation is abstracted step by step by using multi-layer-nonlinear transformation of convolutional neural network(CNN).Using image segmentation technology,the image is divided into foreground and background.According to the calculated background scattering degree,the image texture details are en-hanced.The experimental results show that the design method can ensure that the actual frame number of the constructed animation image and scene can reach the design frame number,that is,to ensure the fluency of the scene and the clarity of the animation.

deep learningweight itemenhancement methodanimated images

蔡希阳

展开 >

泉州师范学院,福建泉州 362000

蒙古国研究大学,蒙古乌兰巴托 016199

深度学习 权重项 增强方法 动画图像

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(12)