首页|基于EfficientNetB0的司机分心检测研究

基于EfficientNetB0的司机分心检测研究

扫码查看
提出了一个名为CBAM-EfficientNetB0的框架,旨在解决低参数条件下司机分心行为识别准确率低的问题.它集成了 CBAM注意力机制,包括通道注意力模块和空间注意力模块.这使得网络更加关注重要的特征信息,从而提高了特征的区分度和表达能力.通过将模型的优化器转换为SGD,并获得优化的学习率和动量参数,提高了模型的识别准确率和收敛性.CBAM-EfficientNetB0 在 State Farm Distracted Driver Detection 数据集上达到了 96.8%的准确率.结果显示,与同类的框架相比,它在低参数条件下表现良好.
Study of Driver Distraction Detection Based on the EfficientNetB0
The article proposes a framework named CBAM-EfficientNetB0,aiming to address the issue of low accuracy in distracted driver behavior recognition under low-parameter conditions.It integrates CBAM attention mechanisms,including channel attention modules and spatial attention mod-ules.This enables the network to focus more on important feature information,thereby improving fea-ture discriminability and expressiveness.By converting the model's optimizer to SGD and obtaining opti-mized learning rate and momentum parameters,the model's recognition accuracy and convergence are improved.CBAM-EfficientNetB0 achieves an accuracy of 96.8%on the State Farm distracted driver detection dataset.The results demonstrate its strong performance under low-parameter conditions compared to similar frameworks.

driver distraction testEfficientNetB0CBAMSGD

石鑫、吕广强、陈果、谢延景、董芳艳、陈科伟

展开 >

宁波大学机械工程与力学学院,浙江宁波 315211

浙大宁波理工学院特种机器人与高端装备智能交互设计制造研究院,浙江宁波 315100

宁波广强机器人科技有限公司,浙江宁波 315000

司机分心检测 EfficientNetB0 CBAM SGD

2024

佳木斯大学学报(自然科学版)
佳木斯大学

佳木斯大学学报(自然科学版)

影响因子:0.159
ISSN:1008-1402
年,卷(期):2024.42(12)