首页|基于改进MobileNet轻量级网络的水稻病害识别

基于改进MobileNet轻量级网络的水稻病害识别

扫码查看
目的:针对传统MobileNet-v2 模型水稻叶面病害识别过程中出现的准确率低、运行速度慢、特征提取难等问题,提出一种基于改进MobileNet-v2 轻量级网络的水稻叶面病害识别模型.方法:该模型采用增加注意力机制模块的结构方法增强图像的特征提取,然后将预训练好的权重参数迁移到改进的模型中,进而对水稻 4种叶面病害进行识别研究.结果:该模型在 50 个epoch的训练测试过程中,训练速度和过拟合问题得到了较大的改善,最终测试识别准确率较传统MobileNet-v2 模型准确率提高了 7.97%.结论:该模型在水稻叶面病害识别中准确率较高,识别速度较快,为水稻叶面病害的识别与研究提供了参考和借鉴意义.
Rice Disease Recognition Based on Improved MobileNet Lightweight Network
Objective:To address the problem of the conventional MobileNet-v2 model in the recognition of rice leaf diseases,including its low recognition accuracy,sluggish running speed,and challenging feature extraction,a rice leaf disease recognition model based on improved MobileNet-v2 lightweight network was proposed.Methods:In this model,the method of adding attention mechanism module is used to enhance image feature extraction,and then the weight parameters of pre-trained model were trans-ferred to the improved model to identify the four leaf diseases of rice.Results:The training speed and overfitting issues were signifi-cantly reduced throughout the training and testing of the new-mobile model over 50 epochs,and the final test recognition accuracy was 7.3%higher than that of the conventional MobileNet-v2 model.Conclusions:The new mobile model is more accurate and quicker in recognizing rice leaf diseases,which provides a reference and significance for identifying and researching of rice leaf dis-eases.

image recognitionrice diseasetransfer learningMobileNet-v2

郑超、张华民

展开 >

安徽科技学院机械工程学院,安徽凤阳 233100

图像识别 水稻病害 迁移学习 MobileNet-v2

安徽省高校自然科学研究重点项目安徽省自然科学基金项目

KJ2019A08031708085QF146

2024

荆楚理工学院学报
荆楚理工学院

荆楚理工学院学报

影响因子:0.168
ISSN:1008-4657
年,卷(期):2024.39(4)