首页|针对篮球罚篮命中率的目标检测、姿态分析算法设计

针对篮球罚篮命中率的目标检测、姿态分析算法设计

扫码查看
罚球作为篮球比赛中十分重要的得分方式,对比赛胜负常有着决定性的作用.近年来,使用视觉或传感器进行罚球分析的方式费时又费力,已经难以满足竞技体育的需求.本研究首先通过YOLOv5 网络算法对目标运动员进行检测跟踪,并引入注意力机制对其进行改进;随后在修复错误识别关节点的基础上,利用OpenPose网络完成人体姿态估计.结果表明,在损失曲线对比中,所提方法第29次时便开始趋于平稳,并保持在 0.352.在ImageNet数据集中的篮球视频预测中,该方法的准确率均稳定在 91%以上,说明其对运动员罚球命中率的预测准确性较高,并能够广泛适用于不同数据视频中,为竞技体育科学化、智能化训练提供了新的参考.
Design of Target Detection and Pose Analysis Algorithms for Basketball Free Throw Accuracy
Free throws are a crucial scoring method in basketball games and often have a decisive impact on the outcome of a match.In recent years,methods using vision or sensors for free throw analysis have become time-consuming and labor-intensive,making them insufficient to meet the demands of competitive sports.This study first employs the YOLOv5 network algorithm for the detection and tracking of target athletes,introducing an attention mechanism to enhance the algorithm.Subsequently,it utilizes the OpenPose network for human pose estimation after correcting misidentified key points.The results indicate that the proposed method stabilizes by the 29th epoch in loss curve comparisons,maintaining a loss of 0.352.In basketball video predictions on the ImageNet data,the method achieves an accuracy consistently above 91%,demonstrating high predictive accuracy for athletes'free throw success rates.This approach can be widely applied to various video datasets,providing a new reference for scientific and intelligent training in competitive sports.

human poserecognitiontarget detectionbasketballYOLOv5 Network

张晓明

展开 >

烟台职业学院 基础教学部,山东 烟台 264670

人体姿态 识别 目标检测 篮球运动 YOLOv5网络

2024

集宁师范学院学报
集宁师范学院

集宁师范学院学报

影响因子:0.132
ISSN:2095-3771
年,卷(期):2024.46(3)