首页|基于可穿戴式多模态人机接口的机械臂运动控制方法

基于可穿戴式多模态人机接口的机械臂运动控制方法

扫码查看
现有的人机接口系统存在指令较少、操作困难、任务能力受限等问题,无法有效拓展到机械臂的多维运动控制。本文提出了一种基于可穿戴式多模态人机接口的机械臂运动控制方法。该方法结合用户的眼电、头部姿态和语音等多模态信号,将其转换成控制指令,从而实现对机械臂在任意角度下的2维和3维连续运动控制。由10名受试者完成了指令输出、2维目标跟踪、字母书写和3维物体抓取等测试。结果显示,系统利用眨眼动作生成指令的平均准确率为96。67%,平均响应时间为1。51 s,平均信息传输率为142。53 bit/min,平均误报率为0。05次/分钟。此外,系统在2维平面沿2条不同路线跟踪目标的均方根偏差分别为0。12和0。14(归一化),抓取3维物体时的平均轨迹效率为92。65%,系统的控制效果与手动控制效果相当。实验结果验证了利用该多模态人机接口实现机械臂高效运动控制的可行性以及它在上肢运动功能辅助方面的应用潜力。
A Motion Control Method for Robotic Arm Based on a Wearable Hybrid Human-Machine Interface
Existing HMI(human-machine interface)systems suffer from issues such as limited commands,complex oper-ation,and restricted task capabilities,preventing effective expansion into multi-dimensional motion control for robotic arms.This paper introduces a method for controlling robotic arm movements based on a wearable hybrid HMI.This method com-bines various signals,including electrooculography(EOG),head posture,and speech from the user,transforming them into control commands,thereby enabling continuous two-dimensional(2D)and three-dimensional(3D)motion control of the robotic arm at any angle.10 participants complete tests involving command output,2D target tracking,alphabetic writing,and 3D object grasping.The results indicate that the blink-generated commands of the proposed system have an average accuracy of 96.67%,an average response time of 1.51 s,an average information transfer rate(ITR)of 142.53 bit/min,and an average false positive rate(FPR)of 0.05 event/min.Additionally,the root mean square deviations of target tracking along 2 different routes on a 2D plane are 0.12 and 0.14(normalized),while the average trajectory efficiency of 3D object grasping is 92.65%.The control performance of the system is comparable to manual control.The experimental results verify the fea-sibility of using a hybrid HMI for achieving efficient motion control of robotic arms and its potential application in assisting upper-limb mobility functions.

hybrid human-machine interfacewearable devicerobotic armmotion control

陆子霖、周亚军、黄骐云、李远清

展开 >

华南理工大学自动化科学与工程学院,广东广州 510640

人工智能与数字经济广东省实验室(广州)脑机智能研究中心,广东广州 510330

华南脑控(广东)智能科技有限公司,广东广州 510320

多模态人机接口 可穿戴设备 机械臂 运动控制

科技部科技创新2030-"脑科学与类脑研究"重大项目

2022ZD0208900

2024

机器人
中国自动化学会 中国科学院沈阳自动化研究所

机器人

CSTPCD北大核心
影响因子:1.134
ISSN:1002-0446
年,卷(期):2024.46(1)
  • 3