首页|基于B样条的连续时间轨迹状态估计研究综述

基于B样条的连续时间轨迹状态估计研究综述

扫码查看
多源数据融合是近年来状态估计技术的一大发展趋势,提高了状态估计的精度和鲁棒性。然而多传感器带来了许多新问题,如高频异频异步数据的时间域关联、传感器外参的准确标定、持续采集型传感器的数据畸变校正、异构传感器数据的融合等。连续时间轨迹方法在克服这些问题上具有天然的优势。本文对基于B样条的连续时间轨迹状态估计研究进行了综述。首先介绍基于B样条的连续时间轨迹状态估计理论,其次对离线标定和在线里程计的不同应用进行了分类梳理,最后展望了未来的研究发展方向。
Review of Continuous-time Trajectory State Estimation Research Based on B-Splines
Multi-source data fusion is a major development trend in state estimation technology in recent years,enhancing the accuracy and robustness of state estimation.However,multi-sensor integration brings new challenges such as time-domain association of high-frequency,different-frequency,and asynchronous data,the accurate calibration of sensor extrin-sic parameters,the data distortion correction of continuous acquisition sensors,and fusion of heterogeneous sensor data.Continuous-time trajectory methods naturally have advantages in overcoming these problems.This paper reviews the re-search on continuous-time trajectory state estimation based on B-splines.Firstly,the theory of continuous-time trajectory state estimation based on B-splines is introduced.Next,different applications to offline calibration and online odometry are systematically classified.Finally,future research directions are discussed.

continuous-time trajectorystate estimationB-splinesensor calibrationSLAM(simultaneous localization and mapping)

吕佳俊、郎晓磊、李宝润、刘勇

展开 >

浙江大学控制科学与工程学院,浙江 杭州 310058

连续时间轨迹 状态估计 B样条 传感器标定 同步定位与地图构建

2024

机器人
中国自动化学会 中国科学院沈阳自动化研究所

机器人

CSTPCD北大核心
影响因子:1.134
ISSN:1002-0446
年,卷(期):2024.46(6)