首页|基于深度学习的遥感影像地物分割研究

基于深度学习的遥感影像地物分割研究

扫码查看
地物分析在村镇建设中扮演着至关重要的角色,其为规划、管理和监测提供了决策支持的关键信息.随着深度学习技术的发展,基于深度学习的语义分割方法在地物分析领域展现出了强大的潜力.文章针对这一问题进行了研究,调研了当前7种基于深度学习的语义分割方法,并在实际数据集上对这些方法进行了广泛的试验与验证.试验结果表明,各个模型在地物分割任务中表现出了不同的优势.同时,为了进一步提高地物分析的准确性和鲁棒性,文章提出了一种集成学习的方法,将多个模型的预测结果进行加权融合.该方法使得模型性能取得了显著的提升,其中像素分类准确率高达89.64%.这表明集成学习在地物分析中的应用潜力,为村镇建设提供了更可靠的技术支持.本研究可为深度学习在地物分析领域的应用提供有益的实践经验,并为未来相关研究和应用提供重要参考.
Research on Remote Sensing Image Land Feature Segmentation Based on Deep Learning
Feature analysis plays a crucial role in village and town construction,providing critical information for decision-making support in planning,management,and monitoring.With the development of deep learning technology,semantic segmentation methods based on deep learning have shown strong potential in the field of terrain analysis.This article focuses on this issue and investigates seven current deep learning based semantic segmentation methods.These methods have been extensively tested and validated on actual datasets.The experimental results indicate that each model exhibits different advantages in land feature segmentation tasks.In order to further improve the accuracy and robustness of terrain analysis,this paper proposes an ensemble learning method that weights and fuses the prediction results of multiple models.This method has achieved significant performance improvement,with a pixel classification accuracy of up to 89.64%.This indicates the potential application of ensemble learning in terrain analysis,providing more reliable technical support for village and town construction.This study provides valuable practical experience for the application of deep learning in the field of terrain analysis,and provides important references for future related research and applications.

feature analysisAI plus urban and rural planningsemantic segmentation

冯勇、冯明

展开 >

郓城县玉皇庙镇农业发展服务中心,山东郓城 274700

同济大学,上海 201804

地物分析 人工智能 城乡规划 语义分割

2024

今日自动化

今日自动化

ISSN:
年,卷(期):2024.(5)