首页|基于相似日的BOHB-Elman光伏电站短期功率预测方法

基于相似日的BOHB-Elman光伏电站短期功率预测方法

扫码查看
随着可再生能源在全球能源结构中的比重逐渐增加,光伏发电站的短期功率预测成为电网管理和能源调度的重要环节.文中提出了一种结合BOHB优化算法和Elman神经网络的短期光伏短期功率预测方法,该方法注重历史数据中相似日的选取,以提高预测精度.研究采用了先进的数据处理技术,对大量历史数据进行深入分析,筛选出与预测日气象和发电特性最为相似的日子,进而利用这些数据训练BOHB-Elman模型.试验结果表明,该方法相比传统的预测模型具有更高的准确性和稳定性,为光伏发电站的能源管理提供了一种新的解决方案.
Short Term Power Prediction Method for BOHB Elman Photovoltaic Power Stations Based on Similar Days
With the increasing proportion of renewable energy in the global energy structure,power prediction of photovoltaic power plants has become an important link in grid management and energy scheduling.This study proposes a short-term photovoltaic power prediction method that combines BOHB optimization algorithm and Elman neural network.The method focuses on the selection of similar days in historical data to improve prediction accuracy.The study utilized advanced data processing techniques to conduct in-depth analysis of a large amount of historical data,selecting the days that are most similar to the predicted daily meteorological and power generation characteristics,and then using these data to train the BOHB Elman model.The experimental results show that this method has higher accuracy and stability compared to traditional prediction models,providing a new solution for energy management of photovoltaic power plants.

photovoltaic power predictionElman neural networkBOHB algorithmsimilar day

赵贤志、袁路

展开 >

大唐贵州发电有限公司新能源分公司,贵州贵阳 550081

光伏短期功率预测 Elman神经网络 BOHB算法 相似日

2024

今日自动化

今日自动化

ISSN:
年,卷(期):2024.(6)