首页|基于MMD与CORAL度量的域适应旋转机械故障诊断方法

基于MMD与CORAL度量的域适应旋转机械故障诊断方法

扫码查看
在工业生产中,由于源域数据和目标域数据分布有差异且有标签的故障数据量较少,传统的旋转机械轴承故障诊断方法难以实现有效的跨域故障诊断,为了解决目标领域和源领域之间的分布对齐和知识转移问题,提出了许多领域自适应方法.然而,它们大多只关注边缘分布对齐(MDA),而忽略了条件分布对齐(CDA).鉴于此,文章提出了基于联合分布的迁移域适应故障诊断模型,在域自适应模块中,为了增强两个域的分布对齐性,匹配边缘分布和条件分布,消除域混淆,将最大平均差异(MMD)和相关对齐(CORAL)结合起来作为新的分布差异度量.文章采用江南大学轴承公开数据集JNU进行验证,实验结果表明,所提方法与常见的域适应方法对比具有更高的诊断精度,说明该方法能够有效地学习可迁移特征.
Domain Adaptive Fault Diagnosis Method for Rotating Machinery Based on MMD and CORAL Metrics
In industrial production,due to the difference in the distribution of source domain data and target domain data and the small amount of labeled fault data,traditional rotating machinery bearing fault diagnosis methods are difficult to achieve effective cross-domain fault diagnosis.In order to solve the problem of distribution alignment and knowledge transfer between target domain and source domain,many domain adaptive methods are proposed.However,they mostly focus on marginal distribution alignment(MDA)and ignore conditional distribution alignment(CDA).In view of this,this paper proposes a migration domain adaptive fault diagnosis model based on joint distribution.In the domain adaptive module,in order to enhance the distribution alignment of two domains,the edge distribution and conditional distribution are matched.In order to eliminate domain confusion,the maximum mean difference(MMD)and correlation alignment(CORAL)are combined as a new distribution difference measure.In this paper,the bearing open data set JNU of Jiangnan University is used for validation.The experimental results show that the proposed method has higher diagnostic accuracy than the common domain adaptation methods,indicating that the method can effectively learn the transferable features.

transfer learningdomain adaptationjoint distributionfault diagnosis

林峰平、许力

展开 >

深圳市康必达控制技术有限公司,广东 深圳 518000

湖北工业大学电气与电子工程工程学院,湖北 武汉 430068

迁移学习 域适应 联合分布 故障诊断

2024

今日自动化

今日自动化

ISSN:
年,卷(期):2024.(11)