首页|基于灰色模型和神经网络的铝合金腐蚀预测对比

基于灰色模型和神经网络的铝合金腐蚀预测对比

Comparative Study of Prediction Models of Aluminum Alloys Based on Gray Model and Artificial Neural Network

扫码查看
采用NaCl溶液对铝合金试验件进行预腐蚀试验,产生腐蚀坑,获取了不同腐蚀时间下的腐蚀数据,然后进行疲劳加载试验。分别利用灰色模型和BP神经网络建立了腐蚀深度及疲劳寿命与腐蚀时间相关性的预测模型,对两种预测模型的精度进行了对比。研究发现,在缺乏足够统计数据的情况下灰色模型预测精度优于神经网络算法。
Aluminum alloy was tested through pre-corrosion in NaCl solution. The corrosion pits were detected to get corrosion damage data of different corrosion time. Corrosion fatigue test of the pre-corroded specimen was carried out. Gray prediction model and BP neural network algorithms were selected to establish predictive model of the relation between fatigue lives, corrosion depth, and corrosion time. The accuracy of both two prediction model were compared. The result showed that the prediction accuracy of gray prediction model is higher than BP neural network algorithm when the statistics is lack.

aluminum alloycorrosion damagemodelprediction

刘成臣、徐胜、王浩伟、张金奎

展开 >

中国特种飞行器研究所,湖北 荆门 448035

海军装备部航订部,北京 100841

铝合金 腐蚀损伤 模型 预测

2013

装备环境工程
中国兵器工业第五九研究所 国防科技工业自然环境试验研究中心

装备环境工程

CSTPCD
影响因子:0.985
ISSN:1672-9242
年,卷(期):2013.(3)
  • 9
  • 6