The work aims to explore the structural characteristics of the oxide layer of micro boron under different tempera-ture and humidity conditions.The surface oxide layer of raw material micron boron was removed by high-temperature water bath soaking treatment,and then accelerated oxidation of micron boron was carried out under constant temperature and humidity conditions.Scanning electron microscopy,transmission electron microscopy,and X-ray photoelectron spectroscopy were used to test the thickness and composition of the oxide layer of boron particles after accelerated oxidation.The changes in surface oxide layer structure and composition were summarized,and the oxidation mechanism of micro boron particles under tempera-ture and humidity conditions was revealed.The results showed that the surface oxide layer of micron boron particles could be removed by 50%after high-temperature water bath soaking treatment.As the accelerated oxidation time prolonged,the thick-ness of the boron particle oxide layer gradually increased.The surface of the boron particles could be represented by a B-BxOy-B2O3 three-layer structure from the inside out.BxOy always appeared with B2O3 simultaneously,and as the oxidation reaction continued,the content of BxOy on the particle surface exceeded that of B.The oxidation mechanism of micro boron un-der temperature and humidity conditions is a reaction mechanism of unidirectional diffusion of O2 into the interior of B parti-cles.B firstly reacts with O2 to form BxOy,which then reacts with O2 to form B2O3.As the thickness of the oxide layer increases,the diffusion resistance of O2 towards the interior of particle B increases,and the oxidation reaction rate decreases accordingly.Compared to the effect of humidity,an increase in temperature can significantly accelerate the formation of an oxide layer on the surface of boron.When the temperature is constant,an increase in humidity can promote the formation of a boron oxide layer.