首页|面向船闸船舶的在线多目标跟踪技术研究

面向船闸船舶的在线多目标跟踪技术研究

Ship Online Multi-object Tracking in Lock Approach Channel

扫码查看
目的 满足船闸船舶在线跟踪要求,改善由于复杂背景、遮挡等因素导致轨迹不连续和身份变更的问题,提出一种增强上下文联系和上下文注意力的多目标跟踪方法.方法 基于设计的在线系统,采集连续帧图像,改进FairMOT多目标跟踪模型.首先,通过在骨干网络设计基于Bottleneck和Contextual Transformer的上下文建模模块,以加强上下文联系,增强场景理解的能力.其次,在迭代聚合后的特征图上应用全局上下文注意力,提高定位船舶目标的能力.结果 相对于原生的FairMOT方法,设计上下文建模模块后,多目标跟踪准确度指标MOTA提高 2.1%,继续添加全局上下文注意力MOTA,共计提高 3.5%,同时在多项指标中取得了最佳表现.结论 改进的FairMOT方法不仅拥有更强的轨迹保持能力,而且在身份维持方面更胜一筹.
The work aims to propose a method of multi-object tracking to enhance contextual connection and attention to meet the requirements of ship online tracking in lock approach channel,and to ameliorate the problem of discontinuous trajecto-ries and identity changes caused by complex backgrounds,occlusion,and other factors.The multi-object tracking model named of FairMOT was improved by continuous frame images captured from the online monitoring system.Firstly,a block based on Bottleneck of FairMOT and Contextual Transformer(BoCoT),was constructed in the backbone to exploit contextual informa-tion and strengthen the representative capability.Secondly,Global Context Attention(GCA)module was embedded after the it-erative aggregation layer to assist in discriminating the object locations.The experimental results showed that,Multiple Object Tracking Accuracy(MOTA)index after context modeling was increased by 2.1%compared with the original FairMOT method,and it obtained a 3.5%increase totally after continuing to embed GCA module.The improved model also achieved the best per-formance in multiple evaluation indexes.In conclusion,the improved FairMOT not only has stronger trajectory retention ability,but it also excels in identity maintenance.

online multi-object trackingship lockimproved FairMOTcontext informationContextual Transformercon-text attention

仇耀宗、李琳、郭皓捷、于清泽

展开 >

中国电子科技集团公司第五十八研究所,江苏 无锡 214072

哈尔滨工程大学 船舶工程学院,哈尔滨 150001

在线多目标跟踪 船闸船舶 改进FairMOT 上下文联系 Contextual Transformer 上下文注意力

研究所产业资助项目

MYXM22020

2024

装备环境工程
中国兵器工业第五九研究所 国防科技工业自然环境试验研究中心

装备环境工程

CSTPCD
影响因子:0.985
ISSN:1672-9242
年,卷(期):2024.21(3)
  • 26