首页|基于CEEMDAN-MPE-VMD多分量筛选融合的滚动轴承故障提取方法

基于CEEMDAN-MPE-VMD多分量筛选融合的滚动轴承故障提取方法

Rolling Bearing Fault Extraction Method Based on CEEMDAN-MPE-VMD Multi-component Screening Fusion

扫码查看
目的 针对航空发动机机械系统滚动轴承故障诊断难的问题,提出一种基于 CEEMDAN-MPE-VMD多分量筛选融合的滚动轴承故障提取方法.方法 用自适应噪声集合经验经验模态(简称CEEMDAN)分解强干扰环境复杂传递路径下测得的滚动轴承振动信号,得到若干个节点分量,筛选出相对MPE较大的前 5个分量(IMF1~IMF5).然后以变分模态分解(VMD)分别分解此5 个分量,筛选出每个分量MPE较大的前 4 个分量(imf1-imf4),再将此 5 组的 4 个分量(imf1~imf4)分别重构,得到新的IMF1~IMF5,与之前的IMF10-IMF14 重构,并进行包络解调,识别故障特征信息.结果 基于西储大学实验数据和滚动轴承实验台测试数据,综合验证了该振动信号提取方法的有效性,并完成了航空发动机中介轴承模拟试验台所测数据的故障识别.结论 该方法可有效提取滚动轴承在简单及复杂传递路径下的故障特征,可作为提取航空发动机主轴轴承特征和诊断方法之一.
Aiming at the difficulty of fault diagnosis of rolling bearing in aero-engine mechanical system,the work aims to propose a fault extraction method of rolling bearing based on CEEMDAN-MPE-VMD multi-component screening fusion.The adaptive noise complete empirical mode decomposition(CEEMDAN)was used to decompose the rolling bearing vibration sig-nal measured under the complex transmission path of strong interference environment,and several node components were ob-tained.The first five components(IMF1-IMF5)with larger relative MPE were selected,and then the five components were de-composed by variational mode decomposition(VMD).The first four components(imf1-imf4)with larger MPE of each compo-nent were selected again,and then the four components(imf1-imf4)of these five groups were reconstructed respectively to ob-tain a new(IMF1-IMF5),which was reconstructed with the previous IMF10-IMF14 for envelope demodulation to identify fault feature information.Based on the experimental data of Xichu University and the test data of the rolling bearing test bench,the effectiveness of the vibration signal extraction method was comprehensively verified,and the fault identification was carried out on the data measured by the aero-engine intermediate bearing simulation test bench.The results show that this method can ef-fectively extract the fault features of rolling bearings under simple and complex transmission paths,and can be used as one of the methods to extract the features and carry out diagnosis of aero-engine spindle bearings.

aero-enginerolling bearingcomponent screening fusionCEEMDANVMDfault diagnosis

张文灏、沙云东、栾孝驰、赵俊豪、蒋函岐

展开 >

沈阳航空航天大学 航空发动机学院,沈阳 110136

航空发动机 滚动轴承 分量筛选融合 CEEMDAN VMD 故障诊断

中国航发产学研合作项目

HFZL2018CXY017

2024

装备环境工程
中国兵器工业第五九研究所 国防科技工业自然环境试验研究中心

装备环境工程

CSTPCD
影响因子:0.985
ISSN:1672-9242
年,卷(期):2024.21(9)