首页|考虑电-氢-热多能互补的微网多目标优化配置

考虑电-氢-热多能互补的微网多目标优化配置

扫码查看
氢储能具有储能容量大、储存时间长、清洁无污染、可实现多种能源网络互联互补和协同优化等诸多优点,有望成为推动分布式能源发展和提升终端能源利用效率的重要支撑技术.为了提高独立型微网供电可靠性及可再生能源利用率,文中分析了典型电、氢、热装置的运行特性,提出考虑电-氢-热多能互补的独立微网多目标优化配置模型,并基于模拟退火的粒子群(simulated annealing particle swarm optimization,SAPSO)算法对目标问题进行求解,获得不同配置方案下的技术经济指标.最后,通过东北某地独立微网优化配置算例,基于MATLAB平台验证了所提多能互补配置方案较传统电储能配置方案负荷失电率降低了 3.18%,可再生能源利用率提高了 8.37%.所提配置方案可有效促进可再生能源消纳,保证独立微网的供电可靠性.
Multi-objective optimization configuration of microgrid considering electricity-hydrogen-heat multi-energy complementation
Hydrogen energy storage has many characteristics such as large energy storage capacity,long storage time,clean and pollution-free,and it realizes the interconnection and complementation of multiple energy networks and collaborative optimization.It is expected to become an important supporting technology to promote the development of distributed energy and improve the efficiency of terminal energy utilization.In order to improve the reliability and renewable energy utilization rate of islanded microgrid,the operation characteristics of typical electric,hydrogen and thermal devices are analyzed,and a multi-objective optimization configuration model of the islanded microgrid is proposed.Then,the target problem is solved based on simulated annealing particle swarm optimization(SAPSO)algorithm to obtain technical and economic indicators under different configuration schemes.Finally,based on the annual natural resource and electric heating load characteristic curve of a certain place in the north,the model built on MATLAB can effectively promote that the load loss rate of the proposed multi-energy complementary configuration scheme decreases by 3.18%,and the utilization rate of renewable energy increases by 8.37%compared with the traditional electric energy storage configuration scheme.Thus,the proposed configuration scheme can effectively promote the consumption of renewable energy and ensure the economy and power supply reliability of the independent micro-grid.

multi-energy complementationhydrogen energy storagemicro-gridmulti-objective optimizationreliabilitysimu-lated annealing particle swarm optimization(SAPSO)algorithm

吕振宇、丁磊、吴在军、王琦、王维

展开 >

南京师范大学电气与自动化工程学院,江苏 南京 210023

东南大学电气工程学院,江苏 南京 210096

多能互补 氢储能 微网 多目标优化 可靠性 模拟退火的粒子群优化(SAPSO)算法

国家自然科学基金江苏省气电互联综合能源工程研究中心项目江苏省高等学校自然科学研究项目

5197703421KJB470024

2024

电力工程技术
江苏省电力公司 江苏省电机工程学会

电力工程技术

CSTPCD北大核心
影响因子:0.969
ISSN:2096-3203
年,卷(期):2024.43(2)
  • 29